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This paper is concerned with the numerical simulation of a random walk in a
random environment in dimension d = 2. Consider a nearest neighbor random
walk on the 2-dimensional integer lattice. The transition probabilities at each
site are assumed to be themselves random variables, but fixed for all time. This
is the random environment. Consider a parallel strip of radius R centered on an
axis through the origin. Let XR be the probability that the walk that started at
the origin exits the strip through one of the boundary lines. Then XR is a
random variable, depending on the environment. In dimension d= 1, the
variable XR converges in distribution to the Bernoulli variable, X^ = 0, 1 with
equal probability, as R -> oo. Here the 2-dimensional problem is studied using
Gauss-Seidel and multigrid algorithms.
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1. INTRODUCTION

In this paper we are concerned with random walks on the one and two
dimensional integer lattice. These walks are nearest neighbor walks, but the
transition probabilities are random variables themselves. The goal is to
understand how these walks behave at large time scales compared to Brow-
nian motion. In dimension d= 1, it has been shown [S] that the large time
behavior is strongly subdiffusive. In constrast, for d > 3 and transition
probabilities of small noise it has been shown [BK] that the large time
behavior is diffusive with probability 1. This paper is mainly concerned
with the d = 2 case. We report on numerical simulations which indicate
that d=2 behavior is different from d= 1 or d>3 behavior.
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We consider an elliptic problem which can be stated in any dimension.
Let Zd be the d dimensional integer lattice. At a lattice point n e Zd, there
are d directions which we denote by e1,..., ed. Thus \e i\ = 1, i= 1,..., d and
the vectors e1,..., ed span a d dimensional vector space. With each neZd

and direction j, 1 < j < d , we associate a Bernoulli random variable bn , j .
Thus bn , j .= 1 with probability 1/2, bn,J = -1 with probability 1/2, and the
bn, j are independent for different values of n and j Let e > 0 be a fixed
number, 0 < e < 1. We shall be interested in walks Y(t), t = 0, 1, 2,... on Zd

with transition probabilities given by the formula,

Next, for integer M> 1 let DM be the set DM= {n = (n 1 , . . . , n d ) : \nd\
<2M}. Consider now the walk Y started at the origin and let XM be the
probability it exits DM through the boundary {n: nd = 2M}. Evidently XM

is a random variable since it depends on the random environment determined
by the variables bn , j . It is also clear that 0<XM< 1 and E[XM] = 1/2. We
are interested in the asymptotic behavior of XM as M ^ oo. Following the
method of Sinai [S], we prove in Section 2 a rigorous result for the d= 1
case.

Theorem 1. If d=1 and 0<e< 1, then XM converges in distribu-
tion as M -> oc to the Bernoulli variable Xm given by Xm = 1 with prob-
ability 1/2, x^ = 0 with probability 1/2.

Observe that since we know 0 < XM < 1 and E[ XM] = 1 /2, the
variable Xx has maximum possible variance. In view of Theorem 1.1 it is
natural to ask if in all dimensions XM converges in distribution to a
variable Xm and to enquire about its variance. For d> 3 scaling arguments
[BK, F, DL] suggest that Xao = 1/2 with probability 1. In this paper we
report on numerical simulations for the d=2 case. Taking e=1/2 and
M = 4 ,5 ,6 we find that the distribution of XM does not decrease
significantly over the three scales M - 4, 5, 6. In fact we find that up to an
error of 0.025 we have P(XM<0.2) = P ( X M > 0 . 8 ) = 0, P(0.2 < XM<0.3)
= P(0.7 < XM<0.8) = 0.05, P(0.3 <XM<0.4) = P(0.6 < XM<0.7) = 0.15,

P(0.4 < XM<0.5) = P(0.5 <XM<0.6) = 0.30. Hence we expect that for
d= 2 the variance of X^ is nonzero as in the one dimensional case. In con-
trast to the one dimensional situation, we expect the probability that Xx
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is close to 1 or 0 is small. In Section 4 we give the details of our numerical
simulations.

In [F] a renormalisation group argument suggests that the mean
square fluctuation of the walk at large time t is linear in t, even in dimen-
sion d = 2 . Therefore, at the level of mean square fluctuation, the walk
behaves diffusively at large time. Our results are not inconsistent with this
claim. They do suggest however, that the recurrence properties of the d = 2
walk differ from those of the standard walk in Z2.

To see this, let SM denote the circles in R2 centered at the origin and
with radius 2M, M = 0, 1,2,.... For M=1,2,..., let pM be the probability
that the walk started at (2M, 0) crosses SM + 1 before crossing S M _ 1 . The
probability pM is, like XM, a random variable of the environment. Further-
more, pM and pM, are independent if |M — M ' | > 2 . We expect that as
M -> oo, the variable pM converges in distribution to a variable px with
£[/>oo] = 1/2, corresponding to the zero noise case, and that px has finite
variance.

Consider the walk started at the origin. For R > 2, let NR be the
number of recurrences to the origin before the walk has gone a distance R.
In the standard walk case one has NR ~ c In R for some constant c when
R is large. We can infer from Sinai's results [S] what NR should be when
there is a random environment. We do this by thinking of the walk as
inducing a walk on the circles SM, M = 0,1,2.. . . Since the pM are
approximately independent with expectation 1/2, we are roughly in the
situation studied by Sinai. According to his method, the number of
recurrences to the origin before the walk crosses the circle SN is of order
exp[cN//V] when N is large, for some constant c. Putting R = 2N, we con-
clude that NR is of order NK~exp[c ^/\n R] when R is large. This is a
marked contrast to the case of the standard walk.

One can see the connection to Fisher's result by considering the ques-
tion of the number of recurrences to a line. Thus consider the walk starting
at the origin again and let NR be the number of recurrences to the line
{(n, 0): n e Z} before the walk has gone a distance R ~ 2N. In the standard
walk one has NR ~ cR for large R. We expect that this continues to be the
case when there is a random environment. To see this, let P M ( n ) , n e Z ,
M= 1, 2,... be the probability that the walk started at the point (n, 2M) hits
the line {(r, 2 M + 1 : r e Z } before hitting the line {(r, 2 M - 1 ) : reZ}. In view
of our numerical results it is reasonable to expect that p M ( n ) and pM(n')
are approximately independent if \n — n'\ »2M. Consider now the walk as
inducing a walk on the lines {(n, ±2M):neZ}, M = 0, 1,2,...,N. In the
standard walk situation the line {(n, 2M): neZ} is visited over a length
scale of 2N during the order 2N recurrences to the line {(n, 0): n e Z}. If this
continues to be the case for the random environment then the weak
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correlation of the probabilities pM(n) on length scales larger than 2M can
reduce fluctuations sufficiently to still give order 2N recurrences.

Our method of obtaining the value of XM for a given environment bn,j

is to use a Gauss-Seidel algorithm [C]. This works well for M=4 , 5 but
for M = 6 is too slow to enable one to make a large number of simulations.
We therefore use for M=6 a multi grid algorithm. This algorithm works
much more efficiently than the Gauss-Seidel algorithm but can diverge if
not used appropriately. The divergence problem comes from the fact that
the coarse grid operators are no longer elliptic and hence can have spectral
radius larger than 1. In Section 3 we describe the Gauss-Seidel and multi-
grid algorithms we use. We also discuss an interesting 9x9 matrix which
is connected to the invariance of coarse grid operators in the multigrid
algorithm.

2. THE d=1 CASE

We follow the methodology of Sinai [S]. For neZ, let u(n) be the
probability that the walk Y started at n e DM exits DM through the bound-
ary n = 2M. If we set R = 2M, then u satisfies the finite difference equation,

with the boundary conditions u(— R) = 0, u(R) = 1. An expression for the
solution of this problem can be given in closed form as

where v(k) is given by u(0) = 1,

Let us denote the solution (2.1) at n = 0 by uR(0) to indicate the
dependence on R. Theorem 1.1 follows then from:

Proposition 1. For any S, 0<6< 1, one has
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Proof. It is clear that

We shall use the reflection principle to bound below the RHS of (2.2). For
m e Z, let Ym be the random variables

Thus the Ym are independent Bernoulli variables, Ym = ±fn(( 1 +£)/( 1 — e))
with probability 1/2. For keZ let Sk = ln v(k). We can write the Sk as
sums of the variables Ym,

Evidently we have

Observe now that the reflection principle [D] yields for any positive
integer r.
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Hence,

The reflection principle also yields for any nonnegative integer r the
inequality,

We conclude then that

and

It is easy to see from the central limit theorem that
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The second identity above follows from the fact that SR_ 1 and S_R are
independent and hence converge to independent Gaussians. In view of
(2.2), (2.3) it follows that

By symmetry we also have that

It follows that

The result follows.

3. NUMERICAL ALGORITHMS FOR d=2

For integers M, L > 0 we consider the region DM L <= Z2 defined by
D M , L = { ( n 1 , n 2 ) e Z 2 : \ n 1 \ ^ L 2 M , \ n 2 \ < 2 M } . For functions v :D M , L ->U
we define a finite difference operator £f by

Hence the functions a, b, c, d, e, f, g, h, k are specified. In our case they are
given by the formulas

Here p(i, j) and a(i, j) are randomly generated bits which are 0 or 1 with
probability 1/2.
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We shall be interested in solving a boundary value problem on DM, L

given by

Thus the boundary conditions are given by v is 0 or 1 on the horizontal
boundaries and linear on the vertical boundaries. Having solved the
problem (3.2) numerically we shall take v(0, 0) as our approximate value
of the exit probability XM. Evidently L needs to be sufficiently large to
approximate an infinite strip. Empirically we find that L = 3 is sufficient for
good accuracy.

For M = 4, 5 we approximately solve (3.2) by using a Gauss-Seidel
algorithm. Thus for one iteration of the algorithm we run the loop

When M = 6, this algorithm is too slow and we use a multigrid algorithm.
To describe this consider the coarse grid region DM, L, coarse corresponding
to DM, L, defined by

Observe that if M> 1, then DM,L coarse includes boundary points of DM,L .
For a function v with domain DM, L, coarse we can define a new function Qv
with domain DM, L by linear interpolation. Thus
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If v is a function with domain DM, L then we can define a function Q*v with
domain DM, L, coarse by full weighting [B]. Thus

Since Q takes functions with domain DM, L, coarse to functions with domain
DM, L and Q* takes functions with domain DM, L to functions with domain
DM, L, coarse it follows that the operator hcoarse = 4Q* & Q takes functions
with domain DM, L, coarse to themselves. The operator =^coarse is the operator
!£ transferred to the coarse grid in the language of multigrid.

Since the coefficients in the operator $£ are highly oscillatory we need
to carefully calculate the coefficients of ^coarse. It turns out that ^coarse has
the same form as HP in (3.1), whence we can write

T he Coefficients acoarse , bcoarse , ccoarse , acoarse , ecoarse , fcoarse , g coarse , hcoarse ,
kcoarse are given by the following formulas,
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It is interesting to consider the relationship of ̂ coarse to y when &
has constant coefficients a, b, c, d, e, f, g, h, k. Then ^fcoarse also has con-
stant coefficients and they are related to the coefficients of Z£ by the equa-
tion,
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where the 9 x 9 matrix A is given by

It is easy to see that the vector w = [8, -1, -1, -1, -1, -1, -1, -1, -l]T

is invariant under A, i.e., Aw = w. Thus the nonstandard discretized
Laplacian with coefficients a = 8, b = c = d=e = f=g = h = k= -1,
remains invariant under the coarse grid transformation. In contrast the
standard discretized Laplacian with coefficients a = 4, b = c = d = e = -1,
f = g = h = k = 0 is not invariant under coarse grid transformation. We can
see numerically however that the iterates Anv, n = 1, .2,.... with v = [4, -1,
-1, -1, -1, 0, 0, 0, 0 ]T become rapidly parallel to w as n increases.

Numerically, all the eigenvalues of A are powers of 2. The eigenvalues
4 and 1/4 are simple, the eigenvalues 2 and 1/2 both have multiplicity 2
and the eigenvalue 1 has multiplicity 3. We have already exhibited an
eigenvector with eigenvalue 1. We can also find exactly the eigenvectors
with eigenvalues 4 and 1/4. We have that [16, 4, 4, 4, 4, 1, 1, 1, 1] is the
eigenvector with eigenvalue 4 and [ —4, 2, 2, 2, 2, — 1, — 1, — 1, — 1 ] is the
eigenvector with eigenvalue 1/4. We can find an explanation for the exist-
ence of the eigenvalue 4 from the structure of the transformation
^ ~* -Coarse. Observe first that the operator Q takes the constant function
to itself. Hence if <£ takes the constant function to zero then ^coarse also
takes the constant function to zero. This is the same as saying that if the
vector v = [a, b, c, d, e, f, g, h, k]T is orthogonal to the constant vector
then Av is also. This implies that the constant vector is an eigenvector of
the transpose AT of A. Its eigenvalue turns out to be 4.

We define the multigrid algorithm in the standard way. Thus the fine
grid operator is denoted by S£M (with M = 6 in our case). We can then con-
struct from our formulas for acoarse, bcoarse, ccoarse, dcoarse, ecoarse, fCoarse,
gcoarse , hcoarse , kcoarse inductively the coarse grid operators <£N with N an
integer, 0 < N < M. Let us suppose we have an initial guess for the solution
of the boundary value problem (3.2). If we denote this by v then we iterate
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once on the finest grid, corresponding to M, using the Gauss-Seidel algo-
rithm (3.3). Next we compute the residual rM on the fine grid defined by

Observe that the vector VM in (3.6) is the vector which replaces the initial
guess after the Gauss-Seidel iteration. Next we transfer rM to the coarse
grid corresponding to M—1 by using the transfer operator Q* of (3.5).
Next we do one iteration of the Gauss-Seidel algorithm on the equation

where we take VM-1 to have zero boundary conditions on DM, L,coarse, and
the initial guess for vM-1 to be zero. We transfer the residual of this down
to the next coarsest grid corresponding to M - 2 and proceed in an exactly
similar way until we get to the lowest level we have chosen which is q
for some integer q, 0 < q < M . We have now constructed vectors VN,
N = M • • • q . To go up the V cycle of the multigrid algorithm we transfer vq

to the grid corresponding to q + 1 by means of the operator Q of (3.4).
Now, using vq+1 + Qvq as our initial guess, we iterate once using Gauss-
Seidel on the q + 1 grid. We continue this procedure until we reach the
finest grid again and this gives us the new value of VM. We shall refer to
this algorithm in the next section as mgd(M, q).

4. NUMERICAL RESULTS

The programs for these numerical simulations were written in C. The
random number generator random ( ) was used to construct the random
environment determined by the variables bn ,J . From each random number
generated by random ( ), the 10th bit was taken and a bn, j constructed
from this by subtracting 1. In all the simulations we take L = 3 and e = 1/2.
It was discovered that on taking L = 3 one obtains the value XM correct to
3 decimal places. Increasing the value of L to L = 4 for example improved
accuracy only beyond the third decimal place. Taking e=1/2 insures
that the effect of the noisy environment is substantial, but still avoids
singularities which would occur if we take E close to 1.

For M = 4, 5 results were obtained by Gauss-Seidel iteration. The
approximations to the value of XM were compared every 20th iteration. If
these values differed by less than 1/500 then the program terminated.
Hence the goal was to do sufficient iterations to obtain XM correct to 2
decimal places. In the case of M = 5 this required up to 1000 iterations.

Table I gives the probability density for X4 based on 1,000 simulations
of the random environment.
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Table 1. Probability Density for X4

X4

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.00

0
0
0.001
0.016
0.021
0.033
0.026
0.008
0.001
0

0.01

0
0
0.003
0.011
0.023
0.020
0.026
0.011
0.002
0

0.02

0
0
0.002
0.011
0.022
0.032
0.015
0.008
0.001
0

0.03

0
0.002
0.005
0.012
0.023
0.031
0.020
0.001
0
0

0.04

0
0
0.002
0.015
0.025
0.035
0.012
0.009
0
0

0.05

0
0.001
0.006
0.017
0.036
0.025
0.019
0.002
0.001
0

0.06

0
0
0.006
0.018
0.026
0.018
0.018
0.004
0
0

0.07

0
0
0.006
0.022
0.026
0.026
0.01
0.002
0.001
0

0.08

0
0.001
0.004
0.018
0.042
0.038
0.011
0.003
0
0

0.09

0
0.002
0.009
0.026
0.032
0.026
0.011
0.002
0
0

Thus our computed value for P(X4 = 0.34) is, from the above table,
0.015. In a separate run of 10,000 simulations roughly the same table of
values for the probability density was obtained. Observe that X4 stays
away from both 0 and 1. This is in marked contrast with the d = 1 case
where we have shown that XM concentrates at 0 and 1 for large M. Note
also that there is a significant spread of X4 around the value 0.5. This
contrasts with the conjectured behavior of XM in d> 3 dimensions when M
is large. There one expects XM to concentrate at 0.5 for large M.

The qualitative features of the X4 table persist for X5 and X6. The X5

table, based on 1000 simulations, is given in Table II.
The probability density table for X6 was obtained by using the multi-

grid method. It is clear from the formulas for the coarse grid operators
given in Section 3 that coarse grid operators will in general not be elliptic
everywhere. Hence the spectral radius can be larger than 1. We tested the

Table II. Probability Density for X5

X5

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.00

0
0
0
0.012
0.025
0.052
0.017
0.015
0.002
0

0.01

0
0
0.003
0.006
0.027
0.042
0.023
0.006
0.001
0

0.02

0
0
0.001
0.011
0.026
0.031
0.020
0.008
0
0

0.03

0
0
0
0.019
0.021
0.034
0.018
0.007
0
0

0.04

0
0
0.006
0.016
0.037
0.023
0.013
0.001
0
0

0.05

0
0
0.001
0.018
0.021
0.029
0.008
0.007
0
0

0.06

0
0
0.007
0.018
0.028
0.026
0.012
0.002
0
0

0.07

0
0.001
0.009
0.009
0.031
0.034
0.007
0.004
0
0

0.08

0
0.001
0.005
0.025
0.025
0.024
0.012
0.001
0
0

0.09

0
0.001
0.005
0.025
0.053
0.021
0.006
0.001
0
0
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convergence properties of the coarse grid operators. This was done by
iterating on the constant function using the Gauss-Seidel algorithm with a
coarse grid operator. One assumes zero boundary conditions on DM, L, coarse

and M = 6, L = 3. The value of the vector at the origin is recorded every
10th iteration. Suppose this value is y and the previous recorded value is
Vprev. The coarse grid operator is determined to give a converging Gauss-
Seidel algorithm if |y — yprev| < |ypiev |/100 at some point before 1000 itera-
tions. If this fails to happen we conclude the coarse-grid operator gives a
diverging Gauss-Seidel algorithm. The coarse grid operators for M = 6 can
be labeled J^m ra = 5, 4, 3, 2, 1, with higher values of m corresponding to
finer grids. It was discovered that Gauss-Seidel for <£5 converges with
probability 0.97, for y4 with probability 0.87, for ^ with probability 0.84
and for y2 with probability 0.92. This was based on 1000 simulations.

In view of the probability of divergence of coarse grid iterations, the
multi-grid algorithm needed to be implemented with care. To do this we
first computed 20 V cycles of the algorithm mgd(6, 3). This was declared to
converge if the standard deviation of the value of X6 given by the last 4
iterations was less than 0.01/^/10. If the standard deviation was larger than
this we computed 40 V cycles of mgd(6, 4). Again this was declared to con-
verge if the standard deviation of the last 4 iterations was less than
0.01/^/10. In 1000 simulations there was just one seed which did not con-
verge according to one of the above criteria. This was found to converge
by computing a large number of iterations of mgd(6, 5).

Surprisingly it was discovered that the algorithms m d g ( 1 ) and mgd(2)
converged for very few seeds. The algorithm mgd(3) converged for about
80% of seeds and is still fast, requiring just 20 V cycles for convergence. In
contrast pure Gauss-Seidel iteration on the fine lattice requires 5000 itera-
tions for 2 decimal place accuracy.

Table I I I . Probability Density for X6

X6

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.00

0
0
0.001
0.007
0.020
0.029
0.021
0.006
0
0

0.01

0
0
0.002
0.013
0.022
0.036
0.025
0.004
0.001
0

0.02

0
0
0.004
0.014
0.032
0.029
0.018
0.007
0
0

0.03

0
0
0.002
0.012
0.032
0.031
0.011
0.003
0
0

0.04

0
0.001
0.002
0.019
0.030
0.034
0.012
0.004
0
0

0.05

0
0
0.002
0.014
0.039
0.024
0.012
0.004
0
0

0.06

0
0
0.004
0.022
0.033
0.036
0.012
0.002
0
0

0.07

0
0
0.004
0.021
0.039
0.027
0.005
0.001
0
0

0.08

0
0
0.007
0.021
0.039
0.027
0.015
0.002
0
0

0.09

0
0.001
0.009
0.024
0.032
0.030
0.005
0.002
0
0
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Using the above implementation of the multi-grid algorithm we
obtained Table III for the probability density for X6. The table was con-
structed from 1000 simulations.
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